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• Okay, I know how to solve this equation:  give me b and 
I’ll give you x.  

• But what can I do with that knowledge?
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Example: Fracture dynamics
• New simulations show it is possible for shear-induced cracks 

to travel at transsonic and supersonic speeds under certain 
conditions, contradicting classical theory. 

• This movie shows the crack propagation in the harmonic 
(linear) material. The speed in this case is transsonic after 
the emergence of the daughter crack

• This simulation was performed on several thousand 
processors of the ASCI White supercomputer at LLNL



4 of 48

Simulation is emerging as a peer to 
theory and experiment

Enabling
Computational
Technologies

computational math
computer science

MPP

Large-scale simulation plays a central role 
in nearly every LLNL program

Lasers & Energy
combustion

ICF modeling

Engineering
structural dynamics
electromagnetics Experiments are 

too expensive

Environmental
global climate

groundwater flow

Physics & Biology
materials modeling

drug design 

Experiments 
are impractical

SSP / ASCI
radiation transport

hydrodynamics

Experiments are 
prohibited
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How does Ax=b arise? 
A simple example

• We derive, over the next several slides,  a 
discretization of the heat equation 

to arrive at the sequence of problems of the form 

where each step entails a matrix solve 

, 0,1, 2,k kAx b k= = …

2( , , ) ( , , ) ( , , )tu x y t u x y t f x y tκ= ∇ +



6 of 48

A simple example
• Consider a rectangular, homogeneous metal plate.  

Suppose the four edges of the plate are held at a 
constant temperature of 0, and a constant source of 
heat is placed in the middle of the plate:
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The heat equation

• The temperature at time t and location (x,y) in the 
plate, denoted u(x,y,t), is determined by the 
partial differential equation (the heat equation):
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Discretizing the problem
• Approximate u(x,y,t) at the intersections of gridlines
• N gridlines in the x-direction, M in the y-direction
• Since u=0 on boundaries, we don’t show boundaries 
• Let h be the grid spacing (equal in both directions)
• A gridpoint (i,j) is located at  (xi=ih, yj=jh)
• We number the MN gridpoints lexographically [example: if 

N=9, M=8 as shown, point 23 is located at (i,j)=(3,5) ]

1 2 3 4
N

N+1

2N

…2N+1
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x
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MN
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We use Taylor series derive 
approximate derivative formulae
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• We use the notation 
• Use Taylor series to approximate partial 

derivatives at (i,j) and time k∆t:
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• We can use the same approach to obtain an 
approximation for the time derivative.  From the 
Taylor series:

• Rearranging:

• Applying this to the partial derivative in the heat 
equation yields

2 2
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• We drop the remainder terms and substitute into the 
heat equation. Assuming that  we know temperature at 
(i,j) and time k-1, we obtain a system of equations for 
the temperature at time k, for all i=1,2,…N  and 
j=1,2,…M .

Note that when i=1, the equation calls for
that i=N, requires .  Similarly,  j=1  needs
and j=M entails           .  

But these are all boundary values, and by the boundary 
condition u=0 vanish from the equations.

1
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• Collect all the unknowns on the left and the known 
quantities on the right, we obtain

where                   and 

• We have MN equations in MN unknowns to approximate the 
temperature u(x,y,k∆t) if we know the temperature u(x,y,(k-1)∆t) .

• We order the MN unknowns into a vector of length MN, and 
organize the equations to match.

( )
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i j i j i j i j i j i jr u r u u u u F− + − ++ 4 + + + + =
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• We have MN equations in MN unknowns to 
approximate the temperature u(x,y,k∆t) if we 
know the temperature u(x,y,(k-1)∆t) .
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• The matrices C and B are and are given by:

• Letting A be the block tridiagonal matrix with 
blocks B & C, the temperature at any time k∆t is 
computed from the temperature at time (k-1) ∆t
by solving the matrix equation

1 4
1 4

1 4

1 4

r r
r r r

C r r r

r r

+ 
 + 
 = +
 
 
 + 

B rI=

NxN 

k kAU F=



16 of 48

• Thus, we may start with an initial temperature distribution U 0
and solve the sequence of problems, each having the same 
matrix A and a new right-hand side F k.

• The quality of the solution depends on the truncation errors h
and ∆t.

• Note: This particular method, fully implicit backward-in-time, is derived 
because it is easy to explain in brief.  This is NOT a robust method for this 
problem.

• The big question:  How do we solve  
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How about Gaussian elimination 
(i.e., LU factorization)?

• The nonzero structure of A (14x14 grid, MN=196) is:
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How about Gaussian elimination 
(i.e., LU factorization)?

• The nonzero structures of L and U are:
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Of course, it’s never this simple
• Numerical stability & accuracy requirements dictate the 

sizes of ∆t and h

• Anisotropic diffusion coefficients: commonly the diffusivity 
is spatially varying, in which case the equation becomes

• Often, the simulation is on a domain whose physical 
properties are changing over time; that is, A is a time-
dependent matrix, meaning we can’t use the same setup (e.g., 
L & U) for each time step

( )( , , ) ( , ) ( , , ) ( , , )tu x y t x y u x y t f x y tκ= ∇ ∇ +i
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Other complications
• Frequently the shape of the domain changes with 

each time step (or often). In such cases, not only 
does A change, but the grid must be recomputed

• Our example was a scalar equation (one PDE, one 
unknown).  Much more common are systems 
(multiple PDEs, several unknowns at each spatial 
point).  That is, much more complicated equations:
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Complications: complex grid 
geometry

• Many problems cannot be 
posed simply on regular 
Cartesian grids, as they 
require grids upon or 
around irregularly shaped 
physical bodies.

• Example: a grid for 
computing flow around an 
airfoil:
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Complex grid geometry, con’t

• Irregular grids are often 
generated by triangulations 
involving successive refinements 

• Stencils reach near neighbor 
points, but they are spread far 
across the matrix

• Hence, problems on irregular 
grids don’t have tightly banded 
matrices

• Example:  point 18 connects 
directly to 1, 9, 16, 17, 28, 29
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Complex grid geometry, con’t
• Assuming closest neighbor connections, the grid on 

the left produces the matrix nonzero pattern shown 
(45x45 matrix, 258 nonzeros, 12% density)
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Complex grid geometry, con’t
• Assuming closest neighbor connections, the grid on 

the left produces the matrix nonzero pattern shown 
(2889x2889 matrix, 19561 nonzeros, 0.2% density)
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Now, how about LU factorization?

• The nonzero structures of L and U are:
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Semi-Structured-Grid System
• Allows more general 

grids
– Grids that are 

mostly—but not 
entirely—structured

– Example: block-
structured grids

11 12 15 16 18

21 22 23 24 25 27 28

32 33 37 38

42 44 45 47

51 52 54 55 56 59

61 65 66 68 69

72 73 74 77

81 82 83 86 88

95 96 99

G G G G G
G G G G G G G

G G G G
G G G G

G G G G G G
G G G G G

G G G G
G G G G G

G G G
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What solvers to use?

• Direct, i.e., Gaussian Elimination or LU?
• Iterative:
• Jacobi or Gauss-Seidel, A=(D+L+U)

– Jacobi

– Gauss-Seidel
• Krylov, i.e., CG or GMRES

– Required operations:

• Multigrid

1 1( )x D L U x D b− −← + +

1 1( ) ( )x D L Ux D L b− −← + + +

, TAx x y

( ) ( )( )1f f c c f f f
c fx I I A I b A S xυ

−
← + −
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Handling complex geometries with 
overset grids

• Overset grids handles complex 
geometries by posing the 
problem on overlapping regular 
(logically rectangular) grids that 
conform to the geometry.

• The problem is solved on each 
grid.

• Solutions in the regions of 
overlap must be “adjudicated” 
somehow (it could be as simple 
as averaging, or extremely 
complex, depending on 
circumstances).
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OVERTURE
The overset approach is based on component assembly

2. Intersections computed automatically;
blended to submarine body surface

3. Final overset grid

1. Components assembled 
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For combustion simulations, grids are

constructed from CAD data
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OVERTURE
supports overset grid technology for 

complex moving geometries

•• ObjectObject--oriented tools for oriented tools for 
solving CFD and combustion solving CFD and combustion 
problems in complex moving problems in complex moving 
geometrygeometry

•• Portable solution for serial Portable solution for serial 
and parallel environments and parallel environments 
using P++ array classusing P++ array class

•• Adaptive mesh refinement Adaptive mesh refinement 
capabilitiescapabilities

•• Finite Difference and Finite Finite Difference and Finite 
Volume technologyVolume technology

•• Incompressible, Nearly Incompressible, Nearly 
incompressible and incompressible and 
Compressible Flow solversCompressible Flow solvers
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SAMRAI focuses computational 
effort where it is needed

• Adaptively refine grid in 
vicinity of interesting 
behavior

• SAMRAI is an object-
oriented code framework 

• Parallelism is handled by 
the infrastructure, not 
the user

three levels of mesh 
resolution (4X):

coarse
intermediate
fine
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The need for parallelism

• To get accurate simulations, the physicists, 
chemists, and engineers demand ever increasing 
computing power:

• Meterology- want samples spaced
in the tens of miles, but over the 
entire globe! (1 every ten miles at surface, 
extend up 30 miles, gives 650 million gridpoints)

Molecular dynamics – at the atomic scale-
want to calculate interaction of atoms!

• Material deformation and elasticity- need to solve equations 
on grids with ~10 M points every few nano- or pico- seconds
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Scalability is a central issue for 
large-scale parallel computing

Linear solver convergence can be discussed independent of parallel 
computing, and is often overlooked as a key scalability issue.

Linear solver convergence can be discussed independent of parallel 
computing, and is often overlooked as a key scalability issue.
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LLNL’s ASCI White is capable of 
12.3 trillion operations per second

• ASCI White weighs 106 tons and covers 12,000 square feet of floor space (an 
area greater than that of two NBA basketball courts).

• It contains 8,192 microprocessors in 512 shared memory nodes.
• Each node contains 16 Power3-II CPUs built with IBM’s latest semi-conductor 

technology (silicon-on-insulator and copper interconnects).
• Its 8 TB of memory is 125,000 times that of a 64-MB PC.
• 160 TB of storage in 7000 disk drives provides about 16,000 times the storage 

capacity of a PC with a 10-GB hard drive.
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LLNL is a leader in scalable 
numerical algorithms R & D

LLNL multigrid solvers have sped up 
simulation codes 10X or more

Scalable algorithm
Procs Size (M) SMG

1 0.064 6
8 0.512 6

64 4.096 7
125 8.000 7
200 12.800 7

Scalable implementation
Procs Size (M) Seconds Efficiency
1024 67.1 26 41%
2048 134.2 24 43%

+

= major impact on performance!

For example: Algebraic multigrid solver for unstructured mesh 
problems enables ICF simulations on 1500+ processors
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How do we divide up problems for 
multiple processors?

P1
P2

P1 P3 P4

P5
P6

P7

P8 P9 P10

P11

P12 P13

P14

P11

P15

P16

• Usually partition 
the domain

• Local connections

• Load balance
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= Connections to data stored off-processor

= Connections for points local to the processor

11 12 15 16 18 1

21 22 23 24 25 27 28 2

32 33 37 38 3

42 44 45 47 4

51 52 54 55 56 59 5

61 65 66 68 69 6

72 73 74 77 7

81 82 83 86 88 8

95 96 99 9

G G G G G x
G G G G G G G x

G G G G x
G G G G x
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b
b
b
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This partitions the matrix, vectors
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P1

P2

P3
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Performing the matrix-vector 
multiply Ax=b 

0 0 0
on off onA A x

3 3 3
on off onA A x

2 2 2
on off onA A x

1 1 1
on off onA A x

0
offx

1
offx

2
offx

3
offx

0 0 0 0 0
on on off offA x A x b+ =

1 1 1 1 1
on on off offA x A x b+ =

2 2 2 2 2
on on off offA x A x b+ =

3 3 3 3 3
on on off offA x A x b+ =

P0

P1

P2

P0
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Neutron Transport
3-d time-dependent Boltzmann equation for neutron 

transport
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Neutron Transport
Discretization approaches

• “Multigroup” Energy discretization

• Directional discretizations

• Spatial discretizations
d-differencing, finite element, subcell balance methods

• Time discretization
implicit timestepping coupled with operator splitting

0 1 0≤ < < < < <−E E E EG g g

f d w f
S

ii i( ) ( )Ω Ω Ω
2
∫ ≈ ∑

ψ ϕ( , ) ( ) ( )r r Yn
m

m n

n

n
m

n

N
Ω Ω≈ ∑∑

=−=0
PN Method

SN Method
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NEUTRON TRANSPORT
Shielding Calculation of the Nova Target Chamber 

using Ardra

• 15 billion unknowns
– 23 energy groups 
– 160 million zones
– P1 approximation
– first scatter point source

• BiCGSTAB iteration
• 3840 processors
• 27 hours

Ardra results: visualization 
of neutron scalar flux for 

highest energy group
Colors represent flux values: red highest, blue lowest
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ALPS: Laser-plasma simulation 
using AMR

NIF Beam

Hohlraum Adaptive Mesh Refinement 
(AMR) allows one to focus 
computational resources 
where they are most needed

ALPS simulation of 
light intensity in a 
filamented beam

512 x 512 coarse grid, 
refined 4 x 4

Laser-plasma instabilities
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ALPS
Euler-Poisson model
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ALPS
Light model

From Maxwell’s equations:
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ALPS simulation
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The Big kid’s Playground
• So, if you know how to solve Ax=b, if you know 

how to partition data, and if you know a spot 
about differential 
equations and numerical 
analysis, you can go from 
here

to  

to…                          
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LLNL’s University Relations Program 
supports student internships

Students participate in computational science research 
projects under leading principal investigators

The ISCR alone hosted 55 students and 20 faculty 
during Summer 2000 through a variety of auspices

• ASCI Alliances
• UCDRD “mini-grants”
• LLNL student fellowships

• ASCI Computer Science Institute
• DOE Computational Science Graduate Fellows
• DOE HPC Computer Science Graduate Fellows
• Internships in Terascale Simulation Technology
• National Physical Science Consortium
• and more!
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